3.5.51 \(\int \frac {\cos ^3(c+d x)}{a+b \cos (c+d x)} \, dx\) [451]

Optimal. Leaf size=110 \[ \frac {\left (2 a^2+b^2\right ) x}{2 b^3}-\frac {2 a^3 \text {ArcTan}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} b^3 \sqrt {a+b} d}-\frac {a \sin (c+d x)}{b^2 d}+\frac {\cos (c+d x) \sin (c+d x)}{2 b d} \]

[Out]

1/2*(2*a^2+b^2)*x/b^3-a*sin(d*x+c)/b^2/d+1/2*cos(d*x+c)*sin(d*x+c)/b/d-2*a^3*arctan((a-b)^(1/2)*tan(1/2*d*x+1/
2*c)/(a+b)^(1/2))/b^3/d/(a-b)^(1/2)/(a+b)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {2872, 3102, 2814, 2738, 211} \begin {gather*} -\frac {2 a^3 \text {ArcTan}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b^3 d \sqrt {a-b} \sqrt {a+b}}+\frac {x \left (2 a^2+b^2\right )}{2 b^3}-\frac {a \sin (c+d x)}{b^2 d}+\frac {\sin (c+d x) \cos (c+d x)}{2 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3/(a + b*Cos[c + d*x]),x]

[Out]

((2*a^2 + b^2)*x)/(2*b^3) - (2*a^3*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*b^3*Sqrt[a
 + b]*d) - (a*Sin[c + d*x])/(b^2*d) + (Cos[c + d*x]*Sin[c + d*x])/(2*b*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2872

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Dist[1/
(d*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n*Simp[a^3*d*(m + n) + b^2*(b*c*(m - 2) + a
*d*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 3*a^2*d*(m + n))*Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*n
 - 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m]
|| (EqQ[a, 0] && NeQ[c, 0])))

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cos ^3(c+d x)}{a+b \cos (c+d x)} \, dx &=\frac {\cos (c+d x) \sin (c+d x)}{2 b d}+\frac {\int \frac {a+b \cos (c+d x)-2 a \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx}{2 b}\\ &=-\frac {a \sin (c+d x)}{b^2 d}+\frac {\cos (c+d x) \sin (c+d x)}{2 b d}+\frac {\int \frac {a b+\left (2 a^2+b^2\right ) \cos (c+d x)}{a+b \cos (c+d x)} \, dx}{2 b^2}\\ &=\frac {\left (2 a^2+b^2\right ) x}{2 b^3}-\frac {a \sin (c+d x)}{b^2 d}+\frac {\cos (c+d x) \sin (c+d x)}{2 b d}-\frac {a^3 \int \frac {1}{a+b \cos (c+d x)} \, dx}{b^3}\\ &=\frac {\left (2 a^2+b^2\right ) x}{2 b^3}-\frac {a \sin (c+d x)}{b^2 d}+\frac {\cos (c+d x) \sin (c+d x)}{2 b d}-\frac {\left (2 a^3\right ) \text {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^3 d}\\ &=\frac {\left (2 a^2+b^2\right ) x}{2 b^3}-\frac {2 a^3 \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} b^3 \sqrt {a+b} d}-\frac {a \sin (c+d x)}{b^2 d}+\frac {\cos (c+d x) \sin (c+d x)}{2 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.25, size = 97, normalized size = 0.88 \begin {gather*} \frac {2 \left (2 a^2+b^2\right ) (c+d x)+\frac {8 a^3 \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\sqrt {-a^2+b^2}}-4 a b \sin (c+d x)+b^2 \sin (2 (c+d x))}{4 b^3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3/(a + b*Cos[c + d*x]),x]

[Out]

(2*(2*a^2 + b^2)*(c + d*x) + (8*a^3*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^2] - 4
*a*b*Sin[c + d*x] + b^2*Sin[2*(c + d*x)])/(4*b^3*d)

________________________________________________________________________________________

Maple [A]
time = 0.17, size = 138, normalized size = 1.25

method result size
derivativedivides \(\frac {\frac {\frac {2 \left (\left (-a b -\frac {1}{2} b^{2}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-a b +\frac {1}{2} b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\left (2 a^{2}+b^{2}\right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{3}}-\frac {2 a^{3} \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{3} \sqrt {\left (a -b \right ) \left (a +b \right )}}}{d}\) \(138\)
default \(\frac {\frac {\frac {2 \left (\left (-a b -\frac {1}{2} b^{2}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-a b +\frac {1}{2} b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\left (2 a^{2}+b^{2}\right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{3}}-\frac {2 a^{3} \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{3} \sqrt {\left (a -b \right ) \left (a +b \right )}}}{d}\) \(138\)
risch \(\frac {x \,a^{2}}{b^{3}}+\frac {x}{2 b}+\frac {i a \,{\mathrm e}^{i \left (d x +c \right )}}{2 b^{2} d}-\frac {i a \,{\mathrm e}^{-i \left (d x +c \right )}}{2 b^{2} d}-\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+a \sqrt {-a^{2}+b^{2}}}{\sqrt {-a^{2}+b^{2}}\, b}\right )}{\sqrt {-a^{2}+b^{2}}\, d \,b^{3}}+\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, d \,b^{3}}+\frac {\sin \left (2 d x +2 c \right )}{4 b d}\) \(218\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3/(a+b*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(2/b^3*(((-a*b-1/2*b^2)*tan(1/2*d*x+1/2*c)^3+(-a*b+1/2*b^2)*tan(1/2*d*x+1/2*c))/(1+tan(1/2*d*x+1/2*c)^2)^2
+1/2*(2*a^2+b^2)*arctan(tan(1/2*d*x+1/2*c)))-2*a^3/b^3/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a
-b)*(a+b))^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more de

________________________________________________________________________________________

Fricas [A]
time = 0.43, size = 334, normalized size = 3.04 \begin {gather*} \left [-\frac {\sqrt {-a^{2} + b^{2}} a^{3} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - {\left (2 \, a^{4} - a^{2} b^{2} - b^{4}\right )} d x + {\left (2 \, a^{3} b - 2 \, a b^{3} - {\left (a^{2} b^{2} - b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{2} b^{3} - b^{5}\right )} d}, -\frac {2 \, \sqrt {a^{2} - b^{2}} a^{3} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (2 \, a^{4} - a^{2} b^{2} - b^{4}\right )} d x + {\left (2 \, a^{3} b - 2 \, a b^{3} - {\left (a^{2} b^{2} - b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{2} b^{3} - b^{5}\right )} d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(-a^2 + b^2)*a^3*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos
(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) - (2*a^4 - a^2*b^2
 - b^4)*d*x + (2*a^3*b - 2*a*b^3 - (a^2*b^2 - b^4)*cos(d*x + c))*sin(d*x + c))/((a^2*b^3 - b^5)*d), -1/2*(2*sq
rt(a^2 - b^2)*a^3*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (2*a^4 - a^2*b^2 - b^4)*d*x +
 (2*a^3*b - 2*a*b^3 - (a^2*b^2 - b^4)*cos(d*x + c))*sin(d*x + c))/((a^2*b^3 - b^5)*d)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.41, size = 177, normalized size = 1.61 \begin {gather*} \frac {\frac {4 \, {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )} a^{3}}{\sqrt {a^{2} - b^{2}} b^{3}} + \frac {{\left (2 \, a^{2} + b^{2}\right )} {\left (d x + c\right )}}{b^{3}} - \frac {2 \, {\left (2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2} b^{2}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

1/2*(4*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1
/2*c))/sqrt(a^2 - b^2)))*a^3/(sqrt(a^2 - b^2)*b^3) + (2*a^2 + b^2)*(d*x + c)/b^3 - 2*(2*a*tan(1/2*d*x + 1/2*c)
^3 + b*tan(1/2*d*x + 1/2*c)^3 + 2*a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 +
1)^2*b^2))/d

________________________________________________________________________________________

Mupad [B]
time = 1.07, size = 168, normalized size = 1.53 \begin {gather*} \frac {\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b\,d}+\frac {\sin \left (2\,c+2\,d\,x\right )}{4\,b\,d}+\frac {2\,a^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^3\,d}-\frac {a\,\sin \left (c+d\,x\right )}{b^2\,d}-\frac {a^3\,\mathrm {atan}\left (\frac {\left (a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}\right )\,2{}\mathrm {i}}{b^3\,d\,\sqrt {b^2-a^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^3/(a + b*cos(c + d*x)),x)

[Out]

atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))/(b*d) + sin(2*c + 2*d*x)/(4*b*d) + (2*a^2*atan(sin(c/2 + (d*x)/2)/
cos(c/2 + (d*x)/2)))/(b^3*d) - (a*sin(c + d*x))/(b^2*d) - (a^3*atan(((a*sin(c/2 + (d*x)/2) - b*sin(c/2 + (d*x)
/2))*1i)/(cos(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2)))*2i)/(b^3*d*(b^2 - a^2)^(1/2))

________________________________________________________________________________________